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Those who heard the talk will surely remember that I played Carl Or�'s \Carmina Burana"

as the audience was being seated. I felt that drastic measures were needed to wake people up at

08:30.

My original plan was to begin the talk with a second piece of music. I was going to start

by digressing to talk about a proposal I made 2 or 3 years ago: the \Eternal Home Page".

This is a possible Internet service that some major organization such as the IEEE, Harvard

University, AT&T, or even the Vatican, might o�er: a home page \in perpetuity". Such a

\perpetual page" or \eternity page" would be a home page that the organization would help the

customer set up, with a guarantee that it would last for say 500 years, or until the organization

no longer exists. The details are described on my web site1. Almost everyone wants to be

remembered by posterity, and I still think this is one of my best ideas, even though I haven't

succeeded in getting any organization interested in the proposal. At this point I was planning

to play a recording of Jessye Norman singing the moving and unforgettable aria \Remember

Me" from Henry Purcell's \Dido and Aeneas". However, in the end I omitted this part of the

talk for lack of time.

What follows is a heavily abridged version of the talk. For much more information (and

references) see the Introduction2 to the Third Edition of my book with John Conway \Sphere

Packings, Lattices and Groups".

The original title of the talk was \Codes and Lattices", but in the end | keeping in mind

my slogan that \codes are to lattices as rock and roll is to classical music" | I decided to talk

mostly about sphere packings and lattices.

Although the sphere packing problem has a long history in geometry, the real story begins

(of course) with Shannon. The connection is via the sampling theorem. As Shannon observes

in his classic 1948 paper, if f is a signal of bandwidth W hertz, with almost all its energy

concentrated in an interval of T secs, then f is accurately represented by a vector of 2WT

samples, which may be regarded as the coordinates of a single point in R
n , n = 2WT . Nearly

equal signals are represented by neighboring points, so to keep the signals distinct, Shannon

represents them by n-dimensional `billiard balls', and is therefore led to ask: what is the best

way to pack `billiard balls' in n dimensions?

Ambrose Rogers' book on \Packings and Coverings" came out in 1964, and my plan in this

talk was to imagine that I was giving a report to Claude Shannon on some of the progress that

has been made since 1964. This year is a natural break point in the subject, since John Leech

discovered his great 24-dimensional lattice sphere packing around 1965, and this triggered

many of the subsequent developments. The report proceeds upwards in dimension, beginning

in 2 dimensions.

1www.research.att.com/�njas/eternal.html
2Available from my home page www.research.att.com/�njas/



Dimension 2

The best packing in dimension 2 is the familiar `hexagonal lattice' packing of circles, each

touching six others. The centers are the points of the root lattice A2. The density � of this

packing is the fraction of the plane occupied by the spheres: �=
p
12 = 0:9069 : : :.

In general we wish to �nd �n, the highest possible density of a packing of equal nonover-

lapping spheres in R
n , or �

(L)
n , the highest density of any packing in which the centers form a

lattice. It is known (Fejes T�oth, 1940) that �2 = �
(L)
2 = �=

p
12.

We are also interested in packing points on a sphere, and especially in the `kissing number

problem': �nd �n (resp. �
(L)
n ), the maximal number of spheres that can touch an equal sphere

in R
n (resp. in any lattice in R

n). It is trivial that �2 = �
(L)
2 = 6.

Dimension 3

Just a week before this talk, Thomas Hales at the Univ. of Michigan made a dramatic an-

nouncement: he had �nally settled the 387-year old Kepler conjecture3 that no 3-dimensional

packing has greater density than the face-centered cubic (or f.c.c) lattice A3, or in other words

�3 = �
(L)
3 = �=

p
18.

In two dimensions the hexagonal lattice is (a) the densest lattice packing, (b) the least

dense lattice covering, and (c) is geometrically similar to its dual lattice. There is a little-

known three-dimensional lattice that is similar to its dual, and, among all lattices with this

property, is both the densest packing and the least dense covering. This is the m.c.c. (or

mean-centered cuboidal) lattice, which is in a sense is the geometric mean of the f.c.c. lattice

and its dual the body-centered cubic (b.c.c.) lattice (Conway and the author, 1994).

Dimensions 4{8

Table 1 summarizes what is presently known about the sphere packing and kissing number

problems in dimensions � 24. Entries enclosed inside a solid line are known to be optimal,

those inside a dashed line optimal among lattices.

The large box in the `density' column refers to Blichfeldt's 1935 result that the root lattices

Z ' A1, A2, A3 ' D3, D4, D5, E6, E7, E8 achieve �
(L)
n for n � 8. It is remarkable that more

than 60 years later �
(L)
9 is still unknown.

The large box in the right-hand column refers to Watson's 1963 result that the kissing

numbers of the above lattices, together with that of the laminated lattice �9, achieve �
(L)
n for

n � 9. Andrew Odlyzko and I, and independently Vladimir Levenshtein, determined �8 and

�24. The packings achieving these two bounds are unique.

Dimension 9. Laminated lattices

There is a simple construction, the `laminating' or `greedy' construction, that produces many

of the densest lattices in dimensions up to 26. Let �1 denote the even integers in R
1 , and

de�ne the n-dimensional laminated lattices �n recursively by: consider all lattices of minimal

norm 4 that contain some �n�1 as a sublattice, and select those of greatest density. It had

3See N.J.A. Sloane, \Kepler Conjecture Con�rmed", Nature, Oct. 1, 1998, p. 435.
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24

40

72

126

6

Dim. Highest kissing number

2

240

19656024

272

336

756

Densest packing

2

3

4

5

6

1

7

8

9

10

12

(306 from P9a)

(500 from P10b)

(840 from P12a)

Leech ' �24

�9

Z ' �1

A2 ' �2

16 4320BW16 ' �16

E6 ' �6

E7 ' �7

E8 ' �8

�10 (P10c)

K12

D5 ' �5

A3 ' D3 ' �3

D4 ' �4

Table 1: Densest packings and highest kissing numbers known in low dimensions. (Parenthe-

sized entries are nonlattice arrangements that are better than any known lattice.)

been known since the 1940's that this produces the densest lattices known for n � 10. In 1982

Conway and I determined all inequivalent laminated lattices for n � 25, and found the density

of �n for n � 48 (Fig. 1). A key result needed for this was the determination of the covering

radius of the Leech lattice and the enumeration of the deep holes in that lattice.

What are all the best sphere packings in low dimensions? In a 1995 paper Conway

and I describe what may be all the best packings in dimensions n � 10, where `best' means

both having the highest density and not permitting any local improvement. In particular, we

conjecture that �
(L)
n = �n for n � 9. For example, it appears that the best �ve-dimensional

sphere packings are parameterized by the 4-colorings of Z. We also �nd what we believe to be

the exact numbers of `uniform' packings among these, those in which the automorphism group

acts transitively. These assertions depend on certain plausible but as yet unproved postulates.

A remarkable property of 9-dimensional packings. We also showed that the laminated

lattice �9 has the following astonishing property. Half the spheres can be moved bodily through

arbitrarily large distances without overlapping the other half, only touching them at isolated

instants, the density remaining the same at every instant. All these packings have the same

density, which we conjecture is the value of �9 = �
(L)
9 . Another result in the same paper

is that there are extraordinarily many 16-dimensional packings that are just as dense as the

Barnes-Wall lattice BW16 ' �16.
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Figure 1: Inclusions among laminated lattices �n.

Dimension 10. Construction A.

In dimension 10 we encounter for the �rst time a nonlattice packing that is denser than all

known lattices. This packing, and the nonlattice packing with the highest known kissing

number in dimension 9, are easily obtained from `Construction A' (Leech and Sloane, 1969). If

C is a binary code of length n, the corresponding packing is P (C) = fx 2 Z
n : x (mod 2) 2 Cg.

Consider the vectors abcde 2 (Z=4Z)5 where b; c; d 2 f+1;�1g, a = c�d, e = b+c, together

with all their cyclic shifts, and apply the `Gray map' 0 ! 00; 1 ! 01; 2 ! 11; 3 ! 10 to

obtain a binary code C10 containing 40 vectors of length 10 and minimal distance 4. This is our
description of a code �rst discovered by Best. Then P (C10) = P10c is the record 10-dimensional

packing.

Higher Dimensions

Figure 2 shows the density of the best packings known up to dimension 48, rescaled to make

them easier to read. The vertical axis gives log2 �+n(24�n)=96, Where the center density � is

the density � divided by the volume of a unit sphere. Lattice packings are indicated by small

circles, nonlattices by crosses (however, the locations of the lattices are only approximate).

The �gure is dominated by the two arcs of the graph of the laminated lattices �n, which touch

the zero ordinate at n = 0, 24 (the Leech lattice) and 48. K12 is the Coxeter-Todd lattice,

Q32 is Quebbemann's lattice, and P48q is an extremal unimodular lattice constructed from a

self-dual code of length 48 over GF (3).
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Figure 2: Densest sphere packings known in dimensions n � 48.

That's about the �rst half of the talk. But I've run out of space. For descriptions of the

beautiful packings in Fig. 2, and much more, see the Introduction4 to the Third Edition of my

book with John Conway \Sphere Packings, Lattices and Groups".

4Available from my home page www.research.att.com/�njas/
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