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INTRODUCTION

There are two main avenues along which classical Information Theory has progressed since 1948.

1) Bounds on Communication: Converse-to-coding theorems, the Data Processing theorem,

Rate distortion theory, etc.

2) Coding theorems and algorithms: Theorems and algorithms that addresses the realization

of these bounds, thus establishing their tightness and the optimality of the algorithms that are

associated with the coding theorems.

Some of the classical results are asymptotic in nature and refer to cases where the "block-length"

(or "constraint-length") tends to in�nity. In practice, very long blocks result in causing a very large

encoding and decoding delay and/or in yielding a large computational complexity.

For example, in the case of universal source coding, the classical results that establish the

optimality of various universal coding theorems and algorithms are also asymptotic in nature (i.e.

assuming that the amount of training data tends to in�nity, or that the length of the input string

to be compressed, tends to in�nity).

It is therefore imperative to try to re-derive the classical results, converse theorems and coding

theorems, under the assumption that parameters like delay, processor memory, and computational

complexity are constrained.



Old and new results and attempts to address these problems, some more successful than others,

will be critically discussed in this presentation.

A) Universal noiseless compression with memory and latency

constraints

\In the beginning there was entropy . . . "

Notation:

Let

X`
1 = X1; X2 ; : : : ; X` ; Xi 2 �

j�j = A

Entropy (entropy-rate)

H = lim
n!1

E
1

n
f� logP (Xn

1 )g

Conditional entropy

H(X1 jX
0
�n) = Ef� log P (X1jX

0
�n)g

lim
n!1

H(X1jX
0
�n) = H

Consider a Fixed-to-Variable noiseless encoder for `-blocks, with limited-length history X0
�n.

Let L(X`
1jX

0
�n) be the length function of X`

1, given X0
�n (namely, the number of bits that

represent X`
1). Then

Compression
4
=

1

`
E
�
L(X`

1jX
o
�n)

�
�

1
`
H(X`

1jX
0
�n)

� H(X1jX
0
�n�`)

> H

Thus, the total memory is

N = (n+ 1) + `
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where ` is the decoding latency and where (n+1) is the size of the memory which is allocated

for the past history.

Furthermore,

Compression �
1
`
H(X`

1jX
0
�n) +

1
`

� H(X1jX
0
�n) +

1
`

(Hu�man)

Universal compression

Assume now that P (X`
�n) is not known. It has been demonstrated that despite of the fact that

the underlying probability law is not known, one can still achieve H asymptotically when n tends

to in�nity.

More precisely,

Let the length function for the vector XN 0

1 be:

Lu(X
N 0

1 jX0
�n) = L(X`1

1 jX
0
�n) + L(X`2

`1+1jX
`1
�n+`1

) + � � �

where `i � ` (` is the maximum latency). (A "sliding -window" algorithm). Then, there exist

universal coding algorithms for which

lim
n!1

1

N 0
ELu(X

N 0

1 jX0
�n+1) = H if ` = O(log n).

(See for example [1] [2])

Problem: Given a total memory constraint N = n + `, is it still possible to get a compression

close to H(X1jX
0
�n) > H?

Unfortunately, the answer is negative.

De�nition:Recurrence time

Let N(X1
�t; X

0
�n) be the smallest integer i such that

X1
�t = X�i+1

�i�t ; 0 < i < n� t+ 1

if no such i is found, N(X1
�t; X

0
�n)

4
= n+ 1.
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Also let K(X1
�n) be the largest integer t > 0 such that

N(X1
�t; X

0
�n) < n+ 1 ;

if no such t is found, K(X1
�n)

4
= 0.

Example:

0 1 0 1 0 0 0| {z }
X�3

�n

0 1 0 1| {z }
X1
�2

K(X1
�n) = 2

De�ne

H
�
X1jX

o
�K(X1

�n)

�
= �E logP

�
X1jX

0
�K(X1

�n)

�

Then,

Claim (converse): For any universal noiseless compression encoder (i.e. an encoder that does

not depend on the source), with latency � 0(logn) and memory constraint n, there exist some

stationary ergodic sources for which:

Compression � H(X1jX
0
�K(X1

�n
))�

0(log log n)

log n
> H

Remark: The Lempel-Ziv family of universal data compression algorithms yields a compression

which approaches the entropy of the source, when n, the length of the sequence, gets large. The

redundancy for the LZ algorithm was shown to be upper bounded by 0( log logn
logn

) for \large enough"

n [3].

Recently,[Szpankowski 1997, Savari 1997], the redundancy for the LZ algorithm when applied

to Markov processes was shown to be bounded by 0( 1
logn

) as n gets large.

However, in practice we are interested in cases where n is not large enough for these asymptotic

results to apply.

The lower- bound on the compression that appeared above holds for ANY vanishing-memory

ergodic source [4] when applied to the family of LZ-type algorithms:

Compression � H(X1jX
0
�K(X1

�n)
)�

0(log log n)

log n
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Example: Let Zn
1 be a random i.i.d vector with equally probable letters (i.e. Zn

1 is \purely"

random). Also let

X = : : : ; Xn�i�1
�i ; X2n�i�1

n�i ; : : :

X
(K+1)n�i�1
�i+Kn = Zn

1 ; K = �2; �1; 0; 1; 2

and where is a random \phase", uniformly distributed over [0; n]

: : : 0100011011010001101101000110110100011011 : : :

Thus, X is a stationary ergodic process, where

H(X1jX
o
�n) = 0 :

However, H(X1jX
o
�K(X1

�n
)
) = 1!

Good news:

It is possible to achieve a universal compression such that,

Compression � H
�
X1jX

o
�K(X1

�n)

�
+ 0

�
0(log log n)

log n

�

This is achieved by the HZ conditional string-matching context algorithm (conditional LZ) [5].

The HZ context algorithm:

The algorithm is outlined by the following example:

0 1 0 1 0 0 0| {z }
X
�2

�n

0 1 0 1| {z }
X2
�1

` = 2

X`
1 = 0 1

Step 1: Find the longest su�x Xo
�K of Xo

�n such that

X`
�K = X

`�j
�K�j ; 1 � j � n�K + 1

In our case K = 1 j = 10
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Step 2: Among all substrings of X`�1
�n of length `+K +1, list those that start with Xo

�K (e:g:01)

Step 3: Generate a pointer to a substring with the one (among few, perhaps) substring that is

identical to X`
�K .

Step 4: The code-word is a concatenation

(in binary form) of K (K = 1) and the pointer (1 ; not 10!!!)

B) Universal prediction and classi�cation with memory constraints

Given a sequence of length n;X0
�n+1, we would like to generate an empirical measure Q(X`

1jX
0
�n+1)

for the next incoming ` letters, that will be close to the \true" probability measure that generated

X0
�n+1.

If X`
�n+1 is generated by P (X`

�n+1)

DX0
�n+1

(P k Q) =
1

`
E log

P (X`
1jx

0
�n+1)

Q(X`
1jX

0
�n+1)

� "

Claim (converse): At least for some stationary ergodic sources

DX0
�n+1

(P k Q) � H(X1jX
0
�K(X1

�n)
)�H(X1jX

0
�n+1)� 0

�
log log n)

log n

�

This follows from the fact that � logQ(X`
1jX

0
�n+1) is a proper length-function. Thus the results of

the previous section may be applied.

For large n, H(X1jX
0
�n+1) � H � H(X1jX

o
�K), for some K (the \memory" of the source).

Hence, unless n is large enough so as to make, with high probability, K(X1
�n) � K, no universal

prediction (or classi�cation) is possible.

Claim: Let

Q(X`
1jX

0
�n+1) =

2�LHZ(X
`
1
jX0

�n+1)

P
2�LHZ(X

`
1
jX0

�n+1
)

where LHZ(X
`
1jX

0
�n+1) is the length function of the HZ universal encoder. Then:

DX0
�n+1

(P k Q) � H(X1jX
0
�K(X1

�n
))�H(X1jX

0
�n+1) + 0

�
log log n)

log n

�
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C) Universal \noisy" compression with memory and latency con-

straints ([6])

Distortion-rate function (for mean square-error distortion)

�`(Q) =
1

`
E k X`

1 � Y `
1 k

2

Y `
1 = Q(X`

1) (Quantizer) ;

Y `
1 2 fY1; Y2 ; : : : ; Yi ; : : : ; Y2`Rg ;Yi 2 IR` :

D`(R) = min
Q

�(Q)

D`(R) = min
Q: 1

`
I(X`

1
;Y `
1
)�R :

1

`
E k X`

1 � Y `
1 k

2

D(R) = lim
`!1

D`(R) :

is the Distortion�Rate Function

Clearly D`(R) > D(R).

What happens if instead of full information about the `-th order statistics P`, we are given only

N information bits of an arbitrary representation of this information?

Clearly, for each such N bit vector there may correspond a particular vector-quantizer among

a family of 2N vector-quantizers.

It turns out that if N < 2(R��)l, it is not possible to achieve the minimal distortion that is

achievable when the `-th order statistics is fully known.

Claim: (converse) Let R > 0 be given. Then, for every " > 0 and � > 0, if N < 2(R��)l and l is

su�ciently large, then for any deterministic N -bit representation F : Pl ! f0; 1gN and any set of

2N rate R, l-dimensional vector quantizers
n
Qb; b 2 f0; 1g

N
o
, there exists a stationary and ergodic

process � 2M whose l-th order marginal PDF P satis�es Dl(R) > ", and at the same time

�(QF (P )) > 2Dl(R)� "
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The class of processes M consists of processes for which, for any given " > 0 and given `

1

`
E
�
k X`

1 k
2
�1
n
k X`

1 k
2> B(`; �) � `g

�
� "

where B(`; �) is a bounded positive number.

The good news are that for any � 2M , a distortion = D`(R) + " is achievable with a training

sequence consisting of m independent drawings of `-vectors of the given process where m = 2(R+�)`

and hence

N = 2(R+�)`` logA :

(Extension of Linder, Lugosi and Zeger, 1994). In all of the above, N is �nite, but is pretty large

(i.e N � 2`R).

D) Results for \really small" values of n

U X = f(U) X P (YjX) Y V = g(Y) V

The classical distortion-rate function:

D(R)
4
= inf

P (Y jX):I(X;Y )�R
Ed(X;Y )

1

n
Ed(X;Y) � D(C)

C = channel capacity
4
= sup

P (X)2IP(X)

I(X;Y )

Generalized results (Z&Z `73)

Let Q(�) be a concave non increasing function on (0;1) satisfying some additional constraints:

(a.e. � logX; e�X , etc.). De�ne

IQ(X;Y) =

Z Z
P (X;Y)Q

P (X); P (Y)

P (X;Y)
dXdY
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Remark: Note that if (X1; Y1); (X2; Y2) are independent pairs, then in general

IQ [(X1; Y1); (X2; Y2)] 6= IQ(X1; Y1) + IQ(X2; Y2)

(It is for Q(X) = logX!)

A generalized data processing theorem:

IQ(X;Y) � IQ(U; V)

A generalized distortion-rate bound:

Let

DQ
n (R) = inf

IQ(Un
1
; V n

1
)�R

1

n
d(Xn

1 ; Y
n
1 )

Let

CQ
n (R) = sup

P (X)2IP

1

n
IQ(X1; Y

n
1 )

Then

1
n
d(Un

1 ; V
n
1 ) � DQ

n (C
Q
n )

Example: n = 1 !

Q(X) =

8<
:

1� �X ; 0 � X �
1
2

0 ; X > 1
�

U is evenly distributed on a circle of radius 1
2�
. The distortion between two points on the circle is

the length of the shorter connecting arc, raised to the second power.

Hence, d(U; V ) � (1
2
)2

Q(X) =

8<
:

1� �X ; 0 � X �
1
2

0 ; X > 1
2
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X1 �! X1

X2 �! X2

...

...

XM �! XM

channel

Let � = M
2
, "2 = d(U; V ) � 1

24M2 .

As compared with the \classical" result

"2 �
1

24�`M2
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